Bitcoin Mining Guide with Bitmain Antminer S9 – Poolin ...

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Why i’m bullish on Zilliqa (long read)

Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analysed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralised and scalable in my opinion.
 
Below I post my analysis why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since end of January 2019 with daily transaction rate growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralised and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. Maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realised early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralised, secure and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in amount of nodes. More nodes = higher transaction throughput and increased decentralisation. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue disecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as:
“A peer-to-peer, append-only datastore that uses consensus to synchronise cryptographically-secure data”.
 
Next he states that: >“blockchains are fundamentally systems for managing valid state transitions”.* For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralised and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimisation on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (>66%) double spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT etc. Another thing we haven’t looked at yet is the amount of decentralisation.
 
Decentralisation
 
Currently there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralised nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching their transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public.They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers.The 5% block rewards with an annual yield of 10.03% translates to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS & shard nodes and seed nodes becoming more decentralised too, Zilliqa qualifies for the label of decentralised in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. Faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time stamped so you’ll start right away with a platform introduction, R&D roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalised: programming languages can be divided into being ‘object oriented’ or ‘functional’. Here is an ELI5 given by software development academy: > “all programmes have two basic components, data – what the programme knows – and behaviour – what the programme can do with that data. So object-oriented programming states that combining data and related behaviours in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behaviour are different things and should be separated to ensure their clarity.”
 
Scilla is on the functional side and shares similarities with OCaml: > OCaml is a general purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognised by academics and won a so called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities safety is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa for Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue:
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships  
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organisations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggest that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already taking advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, AirBnB, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are build on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”*
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They dont just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities) also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiatives (correct me if I’m wrong though). This suggest in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures & Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.
  • Bitcoin (BTC) is a peer-to-peer cryptocurrency that aims to function as a means of exchange that is independent of any central authority. BTC can be transferred electronically in a secure, verifiable, and immutable way.
  • Launched in 2009, BTC is the first virtual currency to solve the double-spending issue by timestamping transactions before broadcasting them to all of the nodes in the Bitcoin network. The Bitcoin Protocol offered a solution to the Byzantine Generals’ Problem with a blockchain network structure, a notion first created by Stuart Haber and W. Scott Stornetta in 1991.
  • Bitcoin’s whitepaper was published pseudonymously in 2008 by an individual, or a group, with the pseudonym “Satoshi Nakamoto”, whose underlying identity has still not been verified.
  • The Bitcoin protocol uses an SHA-256d-based Proof-of-Work (PoW) algorithm to reach network consensus. Its network has a target block time of 10 minutes and a maximum supply of 21 million tokens, with a decaying token emission rate. To prevent fluctuation of the block time, the network’s block difficulty is re-adjusted through an algorithm based on the past 2016 block times.
  • With a block size limit capped at 1 megabyte, the Bitcoin Protocol has supported both the Lightning Network, a second-layer infrastructure for payment channels, and Segregated Witness, a soft-fork to increase the number of transactions on a block, as solutions to network scalability.

https://preview.redd.it/s2gmpmeze3151.png?width=256&format=png&auto=webp&s=9759910dd3c4a15b83f55b827d1899fb2fdd3de1

1. What is Bitcoin (BTC)?

  • Bitcoin is a peer-to-peer cryptocurrency that aims to function as a means of exchange and is independent of any central authority. Bitcoins are transferred electronically in a secure, verifiable, and immutable way.
  • Network validators, whom are often referred to as miners, participate in the SHA-256d-based Proof-of-Work consensus mechanism to determine the next global state of the blockchain.
  • The Bitcoin protocol has a target block time of 10 minutes, and a maximum supply of 21 million tokens. The only way new bitcoins can be produced is when a block producer generates a new valid block.
  • The protocol has a token emission rate that halves every 210,000 blocks, or approximately every 4 years.
  • Unlike public blockchain infrastructures supporting the development of decentralized applications (Ethereum), the Bitcoin protocol is primarily used only for payments, and has only very limited support for smart contract-like functionalities (Bitcoin “Script” is mostly used to create certain conditions before bitcoins are used to be spent).

2. Bitcoin’s core features

For a more beginner’s introduction to Bitcoin, please visit Binance Academy’s guide to Bitcoin.

Unspent Transaction Output (UTXO) model

A UTXO transaction works like cash payment between two parties: Alice gives money to Bob and receives change (i.e., unspent amount). In comparison, blockchains like Ethereum rely on the account model.
https://preview.redd.it/t1j6anf8f3151.png?width=1601&format=png&auto=webp&s=33bd141d8f2136a6f32739c8cdc7aae2e04cbc47

Nakamoto consensus

In the Bitcoin network, anyone can join the network and become a bookkeeping service provider i.e., a validator. All validators are allowed in the race to become the block producer for the next block, yet only the first to complete a computationally heavy task will win. This feature is called Proof of Work (PoW).
The probability of any single validator to finish the task first is equal to the percentage of the total network computation power, or hash power, the validator has. For instance, a validator with 5% of the total network computation power will have a 5% chance of completing the task first, and therefore becoming the next block producer.
Since anyone can join the race, competition is prone to increase. In the early days, Bitcoin mining was mostly done by personal computer CPUs.
As of today, Bitcoin validators, or miners, have opted for dedicated and more powerful devices such as machines based on Application-Specific Integrated Circuit (“ASIC”).
Proof of Work secures the network as block producers must have spent resources external to the network (i.e., money to pay electricity), and can provide proof to other participants that they did so.
With various miners competing for block rewards, it becomes difficult for one single malicious party to gain network majority (defined as more than 51% of the network’s hash power in the Nakamoto consensus mechanism). The ability to rearrange transactions via 51% attacks indicates another feature of the Nakamoto consensus: the finality of transactions is only probabilistic.
Once a block is produced, it is then propagated by the block producer to all other validators to check on the validity of all transactions in that block. The block producer will receive rewards in the network’s native currency (i.e., bitcoin) as all validators approve the block and update their ledgers.

The blockchain

Block production

The Bitcoin protocol utilizes the Merkle tree data structure in order to organize hashes of numerous individual transactions into each block. This concept is named after Ralph Merkle, who patented it in 1979.
With the use of a Merkle tree, though each block might contain thousands of transactions, it will have the ability to combine all of their hashes and condense them into one, allowing efficient and secure verification of this group of transactions. This single hash called is a Merkle root, which is stored in the Block Header of a block. The Block Header also stores other meta information of a block, such as a hash of the previous Block Header, which enables blocks to be associated in a chain-like structure (hence the name “blockchain”).
An illustration of block production in the Bitcoin Protocol is demonstrated below.

https://preview.redd.it/m6texxicf3151.png?width=1591&format=png&auto=webp&s=f4253304912ed8370948b9c524e08fef28f1c78d

Block time and mining difficulty

Block time is the period required to create the next block in a network. As mentioned above, the node who solves the computationally intensive task will be allowed to produce the next block. Therefore, block time is directly correlated to the amount of time it takes for a node to find a solution to the task. The Bitcoin protocol sets a target block time of 10 minutes, and attempts to achieve this by introducing a variable named mining difficulty.
Mining difficulty refers to how difficult it is for the node to solve the computationally intensive task. If the network sets a high difficulty for the task, while miners have low computational power, which is often referred to as “hashrate”, it would statistically take longer for the nodes to get an answer for the task. If the difficulty is low, but miners have rather strong computational power, statistically, some nodes will be able to solve the task quickly.
Therefore, the 10 minute target block time is achieved by constantly and automatically adjusting the mining difficulty according to how much computational power there is amongst the nodes. The average block time of the network is evaluated after a certain number of blocks, and if it is greater than the expected block time, the difficulty level will decrease; if it is less than the expected block time, the difficulty level will increase.

What are orphan blocks?

In a PoW blockchain network, if the block time is too low, it would increase the likelihood of nodes producingorphan blocks, for which they would receive no reward. Orphan blocks are produced by nodes who solved the task but did not broadcast their results to the whole network the quickest due to network latency.
It takes time for a message to travel through a network, and it is entirely possible for 2 nodes to complete the task and start to broadcast their results to the network at roughly the same time, while one’s messages are received by all other nodes earlier as the node has low latency.
Imagine there is a network latency of 1 minute and a target block time of 2 minutes. A node could solve the task in around 1 minute but his message would take 1 minute to reach the rest of the nodes that are still working on the solution. While his message travels through the network, all the work done by all other nodes during that 1 minute, even if these nodes also complete the task, would go to waste. In this case, 50% of the computational power contributed to the network is wasted.
The percentage of wasted computational power would proportionally decrease if the mining difficulty were higher, as it would statistically take longer for miners to complete the task. In other words, if the mining difficulty, and therefore targeted block time is low, miners with powerful and often centralized mining facilities would get a higher chance of becoming the block producer, while the participation of weaker miners would become in vain. This introduces possible centralization and weakens the overall security of the network.
However, given a limited amount of transactions that can be stored in a block, making the block time too longwould decrease the number of transactions the network can process per second, negatively affecting network scalability.

3. Bitcoin’s additional features

Segregated Witness (SegWit)

Segregated Witness, often abbreviated as SegWit, is a protocol upgrade proposal that went live in August 2017.
SegWit separates witness signatures from transaction-related data. Witness signatures in legacy Bitcoin blocks often take more than 50% of the block size. By removing witness signatures from the transaction block, this protocol upgrade effectively increases the number of transactions that can be stored in a single block, enabling the network to handle more transactions per second. As a result, SegWit increases the scalability of Nakamoto consensus-based blockchain networks like Bitcoin and Litecoin.
SegWit also makes transactions cheaper. Since transaction fees are derived from how much data is being processed by the block producer, the more transactions that can be stored in a 1MB block, the cheaper individual transactions become.
https://preview.redd.it/depya70mf3151.png?width=1601&format=png&auto=webp&s=a6499aa2131fbf347f8ffd812930b2f7d66be48e
The legacy Bitcoin block has a block size limit of 1 megabyte, and any change on the block size would require a network hard-fork. On August 1st 2017, the first hard-fork occurred, leading to the creation of Bitcoin Cash (“BCH”), which introduced an 8 megabyte block size limit.
Conversely, Segregated Witness was a soft-fork: it never changed the transaction block size limit of the network. Instead, it added an extended block with an upper limit of 3 megabytes, which contains solely witness signatures, to the 1 megabyte block that contains only transaction data. This new block type can be processed even by nodes that have not completed the SegWit protocol upgrade.
Furthermore, the separation of witness signatures from transaction data solves the malleability issue with the original Bitcoin protocol. Without Segregated Witness, these signatures could be altered before the block is validated by miners. Indeed, alterations can be done in such a way that if the system does a mathematical check, the signature would still be valid. However, since the values in the signature are changed, the two signatures would create vastly different hash values.
For instance, if a witness signature states “6,” it has a mathematical value of 6, and would create a hash value of 12345. However, if the witness signature were changed to “06”, it would maintain a mathematical value of 6 while creating a (faulty) hash value of 67890.
Since the mathematical values are the same, the altered signature remains a valid signature. This would create a bookkeeping issue, as transactions in Nakamoto consensus-based blockchain networks are documented with these hash values, or transaction IDs. Effectively, one can alter a transaction ID to a new one, and the new ID can still be valid.
This can create many issues, as illustrated in the below example:
  1. Alice sends Bob 1 BTC, and Bob sends Merchant Carol this 1 BTC for some goods.
  2. Bob sends Carols this 1 BTC, while the transaction from Alice to Bob is not yet validated. Carol sees this incoming transaction of 1 BTC to him, and immediately ships goods to B.
  3. At the moment, the transaction from Alice to Bob is still not confirmed by the network, and Bob can change the witness signature, therefore changing this transaction ID from 12345 to 67890.
  4. Now Carol will not receive his 1 BTC, as the network looks for transaction 12345 to ensure that Bob’s wallet balance is valid.
  5. As this particular transaction ID changed from 12345 to 67890, the transaction from Bob to Carol will fail, and Bob will get his goods while still holding his BTC.
With the Segregated Witness upgrade, such instances can not happen again. This is because the witness signatures are moved outside of the transaction block into an extended block, and altering the witness signature won’t affect the transaction ID.
Since the transaction malleability issue is fixed, Segregated Witness also enables the proper functioning of second-layer scalability solutions on the Bitcoin protocol, such as the Lightning Network.

Lightning Network

Lightning Network is a second-layer micropayment solution for scalability.
Specifically, Lightning Network aims to enable near-instant and low-cost payments between merchants and customers that wish to use bitcoins.
Lightning Network was conceptualized in a whitepaper by Joseph Poon and Thaddeus Dryja in 2015. Since then, it has been implemented by multiple companies. The most prominent of them include Blockstream, Lightning Labs, and ACINQ.
A list of curated resources relevant to Lightning Network can be found here.
In the Lightning Network, if a customer wishes to transact with a merchant, both of them need to open a payment channel, which operates off the Bitcoin blockchain (i.e., off-chain vs. on-chain). None of the transaction details from this payment channel are recorded on the blockchain, and only when the channel is closed will the end result of both party’s wallet balances be updated to the blockchain. The blockchain only serves as a settlement layer for Lightning transactions.
Since all transactions done via the payment channel are conducted independently of the Nakamoto consensus, both parties involved in transactions do not need to wait for network confirmation on transactions. Instead, transacting parties would pay transaction fees to Bitcoin miners only when they decide to close the channel.
https://preview.redd.it/cy56icarf3151.png?width=1601&format=png&auto=webp&s=b239a63c6a87ec6cc1b18ce2cbd0355f8831c3a8
One limitation to the Lightning Network is that it requires a person to be online to receive transactions attributing towards him. Another limitation in user experience could be that one needs to lock up some funds every time he wishes to open a payment channel, and is only able to use that fund within the channel.
However, this does not mean he needs to create new channels every time he wishes to transact with a different person on the Lightning Network. If Alice wants to send money to Carol, but they do not have a payment channel open, they can ask Bob, who has payment channels open to both Alice and Carol, to help make that transaction. Alice will be able to send funds to Bob, and Bob to Carol. Hence, the number of “payment hubs” (i.e., Bob in the previous example) correlates with both the convenience and the usability of the Lightning Network for real-world applications.

Schnorr Signature upgrade proposal

Elliptic Curve Digital Signature Algorithm (“ECDSA”) signatures are used to sign transactions on the Bitcoin blockchain.
https://preview.redd.it/hjeqe4l7g3151.png?width=1601&format=png&auto=webp&s=8014fb08fe62ac4d91645499bc0c7e1c04c5d7c4
However, many developers now advocate for replacing ECDSA with Schnorr Signature. Once Schnorr Signatures are implemented, multiple parties can collaborate in producing a signature that is valid for the sum of their public keys.
This would primarily be beneficial for network scalability. When multiple addresses were to conduct transactions to a single address, each transaction would require their own signature. With Schnorr Signature, all these signatures would be combined into one. As a result, the network would be able to store more transactions in a single block.
https://preview.redd.it/axg3wayag3151.png?width=1601&format=png&auto=webp&s=93d958fa6b0e623caa82ca71fe457b4daa88c71e
The reduced size in signatures implies a reduced cost on transaction fees. The group of senders can split the transaction fees for that one group signature, instead of paying for one personal signature individually.
Schnorr Signature also improves network privacy and token fungibility. A third-party observer will not be able to detect if a user is sending a multi-signature transaction, since the signature will be in the same format as a single-signature transaction.

4. Economics and supply distribution

The Bitcoin protocol utilizes the Nakamoto consensus, and nodes validate blocks via Proof-of-Work mining. The bitcoin token was not pre-mined, and has a maximum supply of 21 million. The initial reward for a block was 50 BTC per block. Block mining rewards halve every 210,000 blocks. Since the average time for block production on the blockchain is 10 minutes, it implies that the block reward halving events will approximately take place every 4 years.
As of May 12th 2020, the block mining rewards are 6.25 BTC per block. Transaction fees also represent a minor revenue stream for miners.
submitted by D-platform to u/D-platform [link] [comments]

5 most promising Altcoins for long-term investments | Coinscapture

5 most promising Altcoins for long-term investments | Coinscapture

After the success of Bitcoin and the rise in the price of the first-ever cryptocurrency, many new coins were developed in cryptoworld. In simple words, any coin other than bitcoin is termed as “Altcoins”. These coins are created by tweaking the Bitcoin's or any other existing cryptocurrencies protocol. In the growing world of cryptocurrency, there are more than 3000 cryptocurrencies which came into existence and so it is a tough job to choose the right Altcoin to invest in it. Here are the 5 most promising Altcoins that can help you to narrow your search.
Disclaimer: This guide should not be considered as financial advice. It is highly recommended to do appropriate market research before any investments.

Litecoin

After the successful launch of Bitcoin, Litecoin was the next one to enter the Cryptoworld in 2011. Charlie Lee - a computer scientist created Litecoin by making some technical changes in the bitcoin’s source-code and made it the fastest peer-to-peer currency that enabled instant, near-zero cost payments to anyone across the world. Also, litecoin has a total supply of 84 million with an average block mining time of 2.5 minutes.

Reasons why to choose Litecoin as a Long-Term Investment

  • Improved: Litecoin algorithm is generally easier to mine but difficult to crack The bitcoin mining is highly processed intensive requiring, application-specific integrated circuit devices with high processing capabilities, while Litecoin mining is memory-intensive requiring less cost-intensive graphics processing units (GPU).
  • Faster block-processing rate: The technical changes done on Bitcoin’s source-code allows Litecoin to processes a block at a much faster rate and giving out rewards to the miner faster in every 2.5 minutes as compared to Bitcoin which processes a block in every 10 minutes. Litecoin network have more capacity to handle the transactions than bitcoin's network
  • SegWit upgrade: Litecoin's SegWit upgrade boost the capacity of the number of transactions a block can hold in litecoin's blockchain, thereby speeding up the transaction settlement times and lowering transaction costs.
  • Higher trading volume: The trading of Litecoin has begun since 2011 and since then it was in the top 10 list of coins. The popularity of Litecoins is so much that you won't face any problem selling them in the future which brings less fear of having risk as compared to other new coins.

Ethereum

Ethereum is the second-largest digital currency introduces Vitalik Buterin in late 2015. It has been a popular choice in many industries as its cool feature named Smart Contracts helps developers to build decentralized applications (dApps) on top of its (i.e. Ethereum's) blockchain which helps to avoid fraud, downtime, and control or interference from a third party. Ethereum can also be used for banking and financial service contracts, ICOS, prediction markets, replacing escrow, identity management. The Enterprise Ethereum Alliance founded in 2017 has over 200 organizations that are testing on various versions of Ethereum's blockchain in different industries. Ethereum has a circulating supply of 106,376,346 ETH, the market capitalization of $26,307, 580,992 and faster transaction of 6 minutes as compared to Bitcoin.

Reasons why to choose Ethereum as a Long-Term Investment

  • Multi-purpose usage- Other than trading Ethereum can be used for ICOs, prediction markets, building tokens and many more ways that very few cryptocurrencies can do as good as Ethereum.
  • Safety: The apps built on Ethereum’s blockchain termed as dApps or decentralized apps are significantly safer and more resistant to hacking than the software you use now.
  • Smart contracts: The smart contract feature offers significant business benefits over more traditional conventional forms of cloud computing and transaction-clearing.
  • Initial Coin Offerings: Ethereum is used ICOs (Initial Coin Offerings) that means it acts as a launchpad for new tokens which thereby makes it a valuable platform and price will increase with its use.

Ripple

Ripple is the hot choice in banking and financial institutions as it can be used as an intermediary for quick transaction-processing and settlement service; allowing to transact directly and instantly across national borders. XRP currently has a fast transaction processing time of about 4 seconds and a cheap transaction fee about $0.004 per transaction (which is less than half a cent). It has a circulating supply of 42,181,995,112 and a market capitalization of around 17 billion USD.

Reasons why to choose Ripple as a Long-Term Investment

  • Well distributed: Ripple is an open-source technology, built on the principles of blockchain with an increasing set of validators.
  • Highly Scalable: XRP has the potential to handle 1,500 transactions per second, 24x7, and can scale to deal with a similar throughput as Visa.
  • Highly Stable: The most stable record of Ripple makes it ready for institutional and enterprise use.
  • Global Bank partners: Ripple has partnered with over 100 banks like Bank of America, UBS, Standard Chartered, Barclays, JP Morgan, Santander, and American Express.

Stellar

Stellar offers the fastest and the cheapest online payment and cross-border payment services as compared to the other large companies. Also, it does not use proof of work verification which is time and energy consuming which allows processing a transaction in approx 5 seconds. It has a market capitalization of $2,378,213,121 and a circulating supply of 19.331,689,641.

Reasons why to choose Stellar as a Long-Term Investment

  • Low-cost transactions: Stellar’s payment protocol prioritizes profit, the low transaction time and high operational efficiency translates to a lower cost of transactions.
  • Currency exchanger: Stellar’s platform also acts as a currency exchanger between government-backed currencies, such as dollars to euros.
  • Creating tokens: Launching a token on the Stellar platform is super easy because of the simple programming.
  • Tech elements: Stellar can integrate with elements such as blockchain smart contracts, and multi signatures that enhances the functionality of the payment protocol

Binance Coin

Binance coin is the official coin of the Binance platform that offers a stage for trading cryptocurrencies. Binance is soon launching its own decentralized exchange, Binance DEX that would be available on all platforms, such as Windows, Linux, Mac OS, iOS and Android. BNB has a market capitalization of 4 billion USD and a circulating supply of 141,175,490.

Reasons why to choose Binance Coin a Long-Term Investment

  • Discounts: BNB can be used not only to pay сommissions for transactions on the exchange and also to get additional discounts for each purchase and exchange via Binance
  • Team: BNB has a great team that is ambitious and experienced in the cryptocurrency world
  • Referrals: BNB coin offers a smart referral scheme which attracts many users and thereby grows the platform’s adoption
  • Loyalty: BNB coin is the only cryptocurrency that rewards customers for their loyalty and creating a fair ecosystem within Binance
    https://coinscapture.com/blog/5-most-promising-altcoins-for-long-term-investments
submitted by coinscapturecom to u/coinscapturecom [link] [comments]

In case you missed it: Major Crypto and Blockchain News from the week ending 12/14/2018

Developments in Financial Services

Regulatory Environment

General News


submitted by QuantalyticsResearch to CryptoCurrency [link] [comments]

Waltonchain All-in-One - Extended

Welcome!

I would like to warmly welcome everyone to waltonchain
This is an updated, extended community-written post and I will try to update it regularly over time.
Please respect our rules (see sidebar) and feel free to comment, contribute and ask questions.
Don’t forget to subscribe to the subreddit for any news on Waltonchain!
 

Getting Started

What is Waltonchain?

The Waltonchain Foundation is building a cross-industry, cross-data sharing platform by integrating Blockchain with the Internet of Things through self-developed RFID Chips with intellectual property rights.
The in-house developed Waltonchain RFID chips integrate a proprietary, genuine random number generator and an asymmetric encryption logic and hardware signature circuit, all of which are patent-protected.
The combination of self-developed RFID chips and the Waltonchain blockchain will ultimately achieve the interconnection of all things and create a genuine, believable, traceable businessmodel with totally shared data and transparent information.
Waltonchain will unfold a new era of the Value Internet of Things (VIoT).
 
Waltonchain Introduction Video
Launch of Waltonchain
 

The Project

The Waltonchain team has formulated a 4-phase development plan, starting from infrastructure platform establishment to gradually incorporating retail, logistics and product manufacturing, and to finally achieving the full coverage of the business ecosystem.
 
As for the phase 1.0 of the project, the team has developed the clothing system integration scheme based on RFID. The application scenarios at phase 1.0 will establish Golden demonstration template
At phase 2.0, our RFID beacon chip will be massproduced and can be used in clothing, B2C retail and logistics.
At phase 3.0, manufacturers will achieve traceable customization of intelligent packaging.
At the project phase 4.0, with the upgrading and iteration of assets information collection hardware and improvement of blockchain data structure, all assets can be registered in Waltonchain in the future.
 
Original Roadmap Thread

Project-Updates:

Video: WTC-Garment System by Waltonchain & Kaltendin
Video: WTC-Food System by Waltonchain
 

Official Resources

Waltonchain Whitepaper
Waltonchain Official Website
Waltonchain Github
 
Official Official Medium
Official Slack
Official Instagram
Official Facebook
Official Twitter @waltonchain
Official Telegram @waltonchain_en
 
Dedicated community Telegram channel for Waltonchain miners, MN & GMN holders.
@WaltonchainMining
 
 
Chinese Community
本群为沃尔顿链华文官方社群
Chinese Telegram @waltonchain_cn
官方网站 - Waltonchain China - Website
 
Korean Community
공식사이트 - Waltonchain Korea - Website
카카오톡 - Waltonchain Korea - Kakao
트위터 - Waltonchain Korea - Twitter
블로그 - Waltonchain Korea - Naver Blog
인스타그램 - Waltonchain Korea - Instagram
Freyr 공식텔레그램방(한국) - Freyrchain Korea - Telegram
Communities in Progress
Russian Twitter @waltonchain_ru
Russian Website
Japanese Twitter @waltonchain_jp
Japanese Website
Brazilian Twitter @waltonchain_br
 

Waltonchain Wallet

Please note that before the token swap,
DO NOT transfer your ERC20 WTC tokens to the WTC wallet!!
 
Wallet for PC (Github)
Web Wallet - Instruction Manual
Windows Wallet - User Manual
Windows Wallet - Tutorial Video
Wallet for Android
Google Playstore
Github
Android User Manual
Android Wallet - Tutorial Video
 
Wallet for IOS
(pending Apple Store approval)
 
Explorer
Waltonchain Explorer
Waltonchain Blockchain Explorer User Manual
 
Mining
Waltonchain GPU Mining User Manual
Waltonchain Progressive Mining Reward Program
 
Unofficial
Unofficial Guardian Masternode Tracker
waltonchain.tech - Unofficial collection of news and useful resources

The Foundation

>> Waltonchain Organizational Chart <<<--
 
Waltonchain Foundation Ltd. (Singapore) - 沃尔顿链
Waltonchain (HK) Development Co. Ltd. (Head company)
Walton Chain Technology Co. Ltd. (Korea)
Silicon (Shenzhen) Electronic Technology Co. Ltd.
Silicon (Xiamen) Electronic Technology Co.Ltd. (RFID Chip Research)
Silicon (Quanzhou) Electronic Technology Co. Ltd.(IoT Intelligent Switch Chip)
Nanjing Sleewa Information Technology Co. Ltd. (Blockchain)
Quanzhou KEDIHENG Electronic Technology Co. Ltd
Xiamen IOT Technology Co. Ltd.
Xiamen Citylink Technology Co.Ltd.
Xiamen ZhongChuan IOT Industry Research Institute Co.Ltd.
 

The Team

Founder:

Do Sanghyuk (都相爀) – Initiator in Korea
Korean, Vice Chairman of the China - Korea Cultural Exchange Development Committee, Director of the Korea Standard Products Association, Chairman of Seongnam Branch of the Korea Small and Medium Enterprises Committee, Chairman of Korea NC Technology Co., Ltd., Senior Reporter of IT TODAY News, Senior Reporter of NEWS PAPER Economic Department, Director of ET NEWS.
 
Xu Fangcheng (许芳呈) – Initiator in China
Chinese, majored in Business Management, former Director for Supply Chain Management of Septwolves Group Ltd., has rich practical experience in supply chain management and purchasing process management. Currently, he is the Director of Shenzhen Silicon, the Director of Xiamen Silicon and the Board Chairman of Quanzhou Silicon. He is also one of our Angel investors.
 

Senior Experts:

Kim Suk ki (金锡基)
Korean, South Koreas electronics industry leader, Doctor of Engineering (graduated from the University of Minnesota), Professor of Korea University, previously worked at Bell Labs and Honeywell USA, served as vice president of Samsung Electronics, senior expert in integrated circuit design field, IEEE Senior Member, Vice President of the Korea Institute of Electrical Engineers, Chairman of the Korea Semiconductor Industry Association. Has published more than 250 academic papers with more than 60 patents.
 
Zhu Yanping (朱延平)
Taiwanese, China, Doctor of Engineering (graduated from National Cheng Kung University), Chairman of the Taiwan Cloud Services Association, Director of Information Management Department of National Chung Hsing University. Has won the Youth Invention Award by Taiwan Ministry of Education and Taiwan Top Ten Information Talent Award. Has deeply studied blockchain applications over the years and led a block chain technology team to develop systems for health big data and agricultural traceability projects.
 

Chief Experts

Mo Bing (莫冰)
Chinese, Doctor of Engineering (graduated from Harbin Institute of Technology), Research Professor of Korea University, Distinguished Fellow of Sun Yat - sen University, Internet of Things expert, integrated circuit expert, Senior Member of Chinese Society of Micro-Nano Technology, IEEE Member. Has published more than 20 papers and applied for 18 invention patents. Began his research of BitCoin in 2013, one of the earliest users of btc 38.com and Korea korbit. Served as Technical Director of Korea University to cooperate with Samsung Group to complete the project Multi sensor data interaction and fusion based on peer to peer network. Committed to the integration of block chain technology and Internet of Things to create a real commercialized public chain.
 
Wei Songjie (魏松杰)
Chinese, Doctor of Engineering (graduated from the University of Delaware), Associate Professor of Nanjing University of Science and Technology, Core Member and Master Supervisor of Network Space Security Engineering Research Institute, Block Chain Technology expert in the field of computer network protocol and application, network and information security. Has published more than 20 papers and applied for 7 invention patents. Previously worked at Google, Qualcomm, Bloomberg and many other high-tech companies in the United States, served as R D engineer and technical expert; has a wealth of experience in computer system design, product development and project management.
 

Core Members

Shan Liang (单良)
Graduated from KOREATECH (Korea University of Technology and Education) Mechanical Engineering Department, Venture Capital PhD, GM of Waltonchain Technology Co., Ltd. (Korea), Director of Korea Sungkyun Technology Co., Ltd., Chinese Market Manager of the heating component manufacturer NHTECH, a subsidiary of Samsung SDI, economic group leader of the Friendship Association of Chinese Doctoral Students in Korea, one of the earliest users of Korbit, senior digital money player.
 
Chen Zhangrong (陈樟荣)
Chinese, graduated in Business Management, received a BBA degree in Armstrong University in the United States, President of TIANYU INTERNATIONAL GROUP LIMITED, leader of Chinese clothing accessories industry, Chinas well-known business mentor, guest of the CCTV2 Win in China show in 2008. Researcher in the field of thinking training for Practical Business Intelligence e-commerce and MONEYYOU course, expert on success for Profit Model course. Began to contact Bitcoin in 2013 with a strong interest and in-depth study of digital money and decentralized management thinking. Has a wealth of practical experience in the business management, market research, channel construction, business cooperation and business model.
 
Lin Herui (林和瑞)
Chinese, Dean of Xiamen Zhongchuan Internet of Things Industry Research Institute, Chairman of Xiamen Citylink Technology Co., Ltd., Chairman of Xiamen IOT. He successively served as Nokia RD Manager and Product Manager, Microsoft Hardware Department Supply Chain Director. In 2014, started to set up a number of IoT enterprises and laid out the industrial chain of the Internet of Things. The products and services developed under his guidance are very popular. Assisted the government in carrying out industrial and policy research and participated in planning of multiple government projects of smart cities, IoT towns and project reviews.
 
Ma Xingyi (马兴毅)
Chinese, China Scholarship Council (CSC) special student, Doctor of Engineering of Korea University, Research Professor of Fusion Chemical Systems Institute of Korea University, Korea Sungkyun Technology Co., Ltd. CEO, Member of Korea Industry Association, Associate Member of the Royal Society of Chemistry, has published his research results in the worlds top journal Nature Communications and participated in the preparation of a series of teaching materials for Internet of Things engineering titled Introduction to the Internet of Things. His current research direction covers cross-disciplines that combine blockchain technology with intelligent medical technology.
 
Zhao Haiming (赵海明)
Chinese, Doctor of Chemical Conductive Polymer of Sungkyunkwan University, core member of Korea BK21th conductive polymer project, researcher of Korea Gyeonggi Institute of Sensor, researcher of Korea ECO NCTech Co., Ltd., Vice President of the Chinese Chamber of Commerce, Director of Korea Sungkyun Technology Co., Ltd. He has been engaged in transfer of semiconductor, sensor and other technologies in South Korea. He is an early participant of the digital currency market.
 
Liu Cai (刘才)
Chinese, Master of Engineering, has 12 years of experience in design and verification of VLSI and a wealth of practical project experience in RFID chip design process, SOC chip architecture, digital-analog hybrid circuit design, including algorithm design, RTL design, simulation verification, FPGA prototype verification, DC synthesis, backend PR, package testing, etc. Has led a team to complete the development of a variety of navigation and positioning baseband chips and communication baseband chips, finished a series of AES, DES and other encryption module designs, won the first prize of GNSS and LBS Association of China for scientific and technological progress. Finally, he is an expert in the consensus mechanism principle of blockchain and the related asymmetric encryption algorithm.
 
Yang Feng (杨锋)
Chinese, Master of Engineering, worked at ZTE. Artificial intelligence expert, integrated circuit expert. Has 12 years of experience in VLSI research and development, architecture design and verification and 5 years of research experience in artificial intelligence and the genetic algorithm. Has won the Shenzhen Science and Technology Innovation Award. Has done an in-depth research on the principle and realization of the RFID technology, the underlying infrastructure of blockchain, smart contracts and the consensus mechanism algorithm.
 
Guo Jianping (郭建平)
Chinese, Doctor of Engineering (graduated from the Chinese University of Hong Kong), Associate Professor of the Hundred Talents Program of Sun Yat-sen University, academic advisor of masters degree students, IEEE senior member, integrated circuit expert. Has published more than 40 international journal conference papers in the field of IC design and applied for 16 patents in China.
 
Huang Ruimin (黄锐敏)
Chinese, Doctor of Engineering (graduated from the University of Freiburg, Germany), academic advisor of masters degree students, lecturer of the Department of Electronics of Huaqiao University, integrated circuit expert. Mainly explores digital signal processing circuit and system implementation and works on digital signal processing technology long-term research and development.
 
Guo Rongxin (郭荣新)
Chinese, Master of Engineering, Deputy Director of the Communication Technology Research Center of Huaqiao University. Has more than 10 years of experience in design and development of hardware and software for embedded systems, works on the long-term research and development of RFID and blockchain technology in the field of Internet of Things.
 
Dai Minhua (戴闽华)
Chinese, graduated in Business Management, received a BBA degree from Armstrong University, senior financial expert, served as Vice President and CFO of Tanyu International Group Co., Ltd. Has 13 years of financial work experience, has a wealth of experience in developing and implementing enterprise strategy and business plans, as well as achieving business management objectives and development goals.
 
Liu Dongxin (刘东欣)
Chinese, received an MBA from China Europe International Business School, Visiting Scholar of Kellogg School of Management at Northwestern University, strategic management consulting expert, investment and financing expert. His current research interest lies in the impact of the blockchain technology on the financial sector.
 

Angel Investors

Song Guoping (宋国平)
Qiu Jun (邱俊)
Yan Xiaoqian (严小铅)
Lin Jingwei (林敬伟)
He Honglian (何红连)

Advisory Team

Ko Sang Tae (高尚台)
Liu Xiaowei (刘晓为)
Su Yan (苏岩)
Zhang Yan (张岩)
Ma Pingping (马萍萍)
Peng Xiande (彭先德)
Fu Ke (傅克)
Xiao Guangjian (肖光坚)
Li Xiong (李雄)
 
The Team (pt.I)
The Team - The Engineers (pt. II)
The Team - Angel Investors & Advisors (pt. III)
WaltonChain Office Tour
Meet the team #1: Xu Fangcheng
Meet the team #2: South Korean Team
Meet the team #3: Wei Songjie
Meet the team #4: Suk Ki Kim
Meet the team #5: Lin Herui
Meet the team #6: Bing Mok (CEO)
 

Partnerships, Affiliations & Corporate Interests

Government Affiliations
Fujian IoT Industry Association
Air purification and smart monitoring project with Jinhu Provincial Government
"Smart Oceans" blockchain R&D project with Fujian Provincial Government
Building "Blockchain Silicon Valley" with Taiwan Cloud and Fujian Provincial Government
KISA and Korean IoT research centre
Taiwan Cloud Association
Korea University engineering department
Korea Blockchain Enterprise Promotion Association (authorized by South Korean National Assembly)
 
Smart Logistics / Smart Warehouse
Xiangyu Group
Fuyao Glass Industry Group co., Ltd
Kehua
Lipson Plastic
NanKang City Furniture industry
Direct delivery
Fujian Soonbox Logistics Park
Huodull Technology
 
Smart Retail
Guangdong Original Clothing Trading Center
Shenzhen M&A Association of Listed Companies
Septwolves
Fuguiniao
SMEN
TANYU
JoeOne
Lalabobo
Ishijah
Kaltendin
 
Technical Alliance
Alibaba Cloud
China Mobile IoT Alliance
Xiamen Branch of China Telecom Corporation Limited
Zhangzhou Branch of** China Telecom** Corporation Limited
NC Technologies
Shenzhen Card Cube Smart Technology co., Ltd
NIDS Sensor Technology
Sungkyun Technologies
NH Tech
Jiangsu Zhongke Internet of Things Technology Venture Capital Co., Ltd.
Fujian C-TOP Electronics co., Ltd.
 
Finance
Sinolink Securites
Gingko Capital (Investment Arm of Waltonchain) -> Investments
Gingko Investment List on Reddit
 
Blockchain Partner
Mobius
Freyrchain
Loci
Coinlink
SwftCoin
Morganchain
Aston
 
Media Partner
JU&KE Creative Design
Yunnan Yunshanghuaxia Trading co., Ltd.
ArtCrypto
Fanfangxiang Culture & Media co., Ltd.
 
Waltonchain Government Affiliations Infographic
Waltonchain Business Affiliations Infographic
Summary of Some of Waltonchain's Government and Business Partnerships
 
Child Chains
Freyrchain - Freyrchain - The world’s first blockchain-based collectibles data authenticity platform
Fashionchain Fashionchain - Fashionchain restructures the strongly-centralized pyramid structure inherent in the fashion industry ecology into a decentralized structure in which all parties connect point to point directly.
 
Click here for the News, PR & Awards Thread.
Click here for a Timeline of Official - Waltonchain-Medium - Posts.
 
Videos
Waltonchain Annual Meeting Presentation Video
Waltonchain Introduction Video
Waltonchain Visit and Product Demo! (Part 1 of 2) - Boxmining
Waltonchain Interview and Demo (Part 2 of 2) - Boxmining
Waltonchain Coinnest Meetup with Mo Bing
Dr. Mo Bing's First Live Interview with Coinnest CEO
Waltonchain CEO Mo Bing announcing the official launch of Waltonchain Mainnet
List of AMAs
First Reddit AMA - October 1, 2017
Technical AMA - October 9, 2017
Hardware AMA Summary - October 17,2017
Extended Hardware AMA - October 24, 2017
Retail Demo AMA - November 27, 2017
Masternode AMA - December 7, 2017
Slack AMA Live Thread - January 3, 2018
Waltonchain Beta Release AMA Part 1 - January 5, 2018
Waltonchain Beta Release AMA Part 2 - January 15, 2018
Waltonchain February Q&A - February 18, 2018
Waltonchain March AMA Part 1 - March 19, 2018
Waltonchain March AMA Part 2 - March 27, 2018
Progress Reports
Waltonchain Work Progress in Q2 2018
Waltonchain Work Progress in Q1 2018
Waltonchain: New Logo · New IC strategy ·New Journey!
The Summary of Waltonchain in 2017
Waltonchain Project Progress Report (Nov. – Dec. 2017)
Professor Kim Suk Ki Arrived at Xiamen for Project Review and to Provide Guidance
A letter to the waltonchain family
A Letter from Waltonchain Foundation
Waltonchain Alpha Version Internal Testing
Noteworthy Posts
Waltonchain’s Bigger Picture: OBOR
Waltonchain: Ushering an Era of IoT Mass Market Adoption
What is Waltonchain and Why Should We Care?
Waltonchain and the Chinese Government: Cooperation, Collaboration and a Bright Future
Top 5 Cryptocurrencies Set For Success In 2018 - Invest in Blockchain
 
Exchanges
Binance, Coinnest, HitBTC, LATOKEN, OKEx, Kucoin, COSS, Coinlink, Allcoin, Coinrail, Cobinhood, Huobi
 

Frequently Asked Questions

 
 
Walton Knights
u/fent11
u/NetworkTraveler
u/yayowam
u/Crypto_RALLY
u/TheSideQuest
RikkiTikki (slack)
Crypto Buff (telegram)
submitted by istaan69 to waltonchain [link] [comments]

#614 Binance Hack 7000 Bitcoin BTC gestohlen, Crypto durch Gold gedeckt & Bitmains Mining Power Abs Binance CEO Says Bitcoin Mining May Move to Cheaper Places ... Bitcoin Trading Philippines for Beginners Tutorial 2020 ... #BİNANCE STAKİNG YAPARAK PARA KAZANMAK. #bitcoin kripto Para borsasında müthiş avantajlar. #link I Spent $100,000 Building a CRYPTOCURRENCY & BITCOIN ... Binance Tutorial deutsch - Anleitung zum Kaufen und ... BINANCE BITCOIN MINING POOL Coming Soon! XRP Not A ... BINANCE POOL WHAT IS AND COULD BE - PERSONAL REVIEW Bitcoin mining of the binance pool #Binancepool #binance ... How to Deposit Bitcoin To Binance Sinhala

Here we will take Bitmain Antminer S9 as an example to introduce how to set up the miner and start to mine Bitcoin. What You Need to Know before Using Miners: 1. PSU output power is recommended to be 20% higher than the power consumption of miner; 2. The router or network switch you are using to get connected with miners shall be ones without POE; 3. Miners can only be connected to router or ... Founder of Bitcoin Miner. Bitcoin Miner trading platform was created by Dan Manson, who is a cryptocurrency enthusiast, and a product engineer who has a good reputation in cryptocurrency trading.As per our review, he has made good money from Bitcoins mining. Also, he is one of several industry leaders to create crypto mining programming. Bitcoin Miner Maker Ebang Narrows First Half Loss To $7 Million, as Covid-19 Hit Demand . Ebang International Holdings Inc., the Chinese maker of bitcoin mining hardware, reported a net loss of $6 ... Wenn Sie sich für den Einstieg in den Bitcoin-Mining entschieden haben, aber noch nicht bereit sind, in teure ASIC (Application Specific Integrated Circuit)-Miner zu investieren, können Sie sich für einen Cloud-basierten Mining-Service entscheiden. Es gibt eine ganze Reihe von solchen Diensten, aber Miner-Server ist definitiv der beste. These units use application-specific integrated circuit chips – or ASICs for short. That is what this article is all about! Mining Hardware Depends on Your Circumstances. Although Bitcoin miners are now limited to choosing from a range of ASICs to mine Bitcoin, there are still plenty of options. Picking one will depend on each miner’s individual circumstances. Some miners will want a ... Solche Miner kommen in den unterschiedlichsten Formen daher, sei es als Grafikkarte (GPU-Miner), als ASIC Miner oder auch als Software, die das Schürfen in einem Bitcoin Mining Pool möglich macht. Es stellt sich nun die Frage, welcher Bitcoin Miner für den Schürfer am ehesten geeignet ist und ob es sich generell lohnt, mit dem Bitcoin Mining anzufangen. Der Bitcoin Mining Verdienst wird von den Pools auf die einzelnen Bitcoin Miner nach zur Verfügung gestellter Rechenleistung aufgeteilt. Je mehr Leistung der einzelne Miner also in den Pool einbringt, desto höher ist sein Anteil an Bitcoin, der ihm ausgezahlt wird. Heutzutage gibt es die verschiedensten Hardwares, Mining Tools und Softwares, die man erwerben kann, um die Mining-Effizienz zu ... Bei Bitcoin werden pro 2016 Blöcken die Difficulty neu angepasst, weil mehr und mehr Miner Bitcoin-Blöcke finden wollen. Im Grunde gilt die folgende Regel. Je mehr Miner Bitcoin schürfen, desto komplexer wird die Difficulty, desto schwieriger wird es auch einen Block zu finden. The miner that finds a valid hash uses it as proof for their work, which grants them the right to validate the next block of transactions and collect the block reward. Although ASICs can be highly efficient, being restricted to a particular use case makes them completely useless for doing anything else. Moreover, the continuous technological ... Bitcoin Miner Hut 8 to Add 275 PH/s of Mining Capacity With $8.3M Capital Raise Hut 8 Mining Corp. has raised $8.3 million from the sale of 6% of its shares to investors.

[index] [4140] [14693] [9804] [3248] [4729] [13137] [984] [10031] [14978] [15373]

#614 Binance Hack 7000 Bitcoin BTC gestohlen, Crypto durch Gold gedeckt & Bitmains Mining Power Abs

Jan.10 -- Binance CEO Zhao Changpeng discusses the challenges exchanges face, possible rules and regulations, and talks about the future for crypto currencie... Learn the basics of Bitcoin Trading in Philippines for beginners. In this video I will show how to Buy and Sell or Trade btc to other altcoins. I will also s... Binance Tutorial deutsch In diesem Video erfährst du wie man auf der Plattform Binance Kryptowährungen handeln kann und gegen Bitcoins kaufen und verkaufen k... පහසුවෙන් BitCoin සහ වෙනත් Coin ඕනෑම CPU/GPU එකකින් mining කරන හැටි - ًWinMiner Sinhala Guide - Duration: 15:24. Thakshanavediya ... 🔥 Get the Ledger Nano X to Safely store your Crypto - https://www.ledgerwallet.com/r/acd6 🔥 Become a Channel Member - https://www.youtube.com/channel/UCjpkws... 11/08/2020 Binance borsasının sunduğu avantajları doğru kullandığınız da çok güzel kazanlar elde edebilirsiniz. Bitcoin son dönemde artmaya devam ediyor Link... As a company I love BINANCE, how they have been performing no matter what type of market they are in, bull market, bear market, sideways, you name it and their token BNB and Exchanges has been ... A $2000 investment turned into me spending $100,000 dollars building a custom shed for cryptocurrency and Bitcoin mining. Here's the story of Drew Vosk and t... This is an educational video on bitcoin mining of binance pool and not a financial advice. #Binance #BinancePool #Binance pool If you want to sign up to Bina... Heute geht's um folgende Themen: Binance gehackt – 7.000 Bitcoin (BTC) gestohlen, Sprott CEO Bullish bzgl. Blockchain gedecktem Gold & Bitmains Mining Power stark gesunken. Blockchain gedecktem ...

#